СпортНаука

Журнал о спорте, физиологии и спортивной медицине.

Спортивная физиология: мышечная сила.

Факторы, влияющие на силу мышц.

Количество силы, которое может создавать мышца, достаточно широко варьируется, причем индивидуально. Генетика играет ключевую роль в процессе генерации сил, но есть и другие факторы:

Нервная система.

мышечная память
Нейроны мозга

Количество задействованных моторных единиц определяет величину силы. Движения, при которых задействуется волокно I типа (медленное сокращение), могут работать действительно долго, но не стоит от них ждать большой силы, тогда как движения с задействованием волокон II типа (быстрое сокращение) способны создавать больше мышечных волокон и, следовательно, генерировать больше силы.

Длина мышц.

Существует правило, которое гласит, что большая сила создается, когда мышца работает при среднем уровне сокращения. Средний уровень — это положение, при котором оптимальное перекрытие тонких и толстых филаментов происходит на уровне саркомера.

Скорость сокращения.

Еще одно правило: максимальное количество силы мышц генерируется при медленном сокращении. Динамическое (изотоническое) мышечное действие создает больше силы, чем статическое (изометрическое) сокращение.

Индивидуальные механические особенности.

Из-за того, что существуют индивидуальные особенности у каждого человека, места прикрепления той или иной мышцы, а также длина конечностей и общее строение тела могут достаточно сильно влиять на силу мышц за счет разных рычагов. Но это скорее биомеханические факторы, чем физиология.

Энергетические системы.

Что касается физических упражнений, область знаний спортивной физиологии включает изучение того, как организм вырабатывает энергию для мышечной работы. Энергия для сокращения мышц поступает в форме аденозинтрифосфата (АТФ), он получается в результате расщепления пищи из рациона.

Аденозинтрифосфат
Аденозинтрифосфат

Первоначально энергия в форме белков, жиров и углеводов преобразуется различными ферментативными путями, которые расщепляют пищу и в конечном итоге приводят к образованию АТФ.
Для удовлетворения повышенных потребностей в АТФ при физических нагрузках в организме усиливаются химические реакции, обеспечивающие поставку АТФ.

Аэробный метаболизм не обеспечивает максимальной мощности мышц, при этом выполняемая работа в умеренной мощностной зоне (аэробная нагрузка) может поддерживаться в течение длительного времени. При таком типе метаболизма наше тело сначала использует свободный кислород, доступный в организме. Затем поддержка устойчивого состояния, при котором будет достигаться равновесное потребление и обеспечение организмом кислорода, будет зависеть от возможностей дыхательной и сердечно-сосудистой систем.

Фосфокреатин — креатиновая система.

Креатин
Креатин

Фосфокреатин — химическое соединение, имеющее высокоэнергетическую фосфатную связь, которая может быть гидролизована, чтобы обеспечить энергию и повторно синтезировать АТФ. Это происходит в течение очень короткого времени. Следовательно, вся энергия, запасенная в мускулах, почти мгновенно доступна для сокращения мышц, так же как и энергия, запасенная в АТФ.

При выполнении коротких и быстрых движений, будь то спринт или рывок штанги, АТФ расщепляется на АДФ , в результате чего происходит ресинтез АТФ с помощью креатинфосфата. Этот метод является самым быстрым и простым способом получения энергии для сокращения мышц. Такой источник энергии может обеспечивать мышечное сокращение около 5 секунд, так как мышечные клетки хранят небольшое количество АТФ и креатинфосфата. Данная энергетическая система работает без кислорода и соответственно называется анаэробным методом производства энергии.

Таким образом, энергия из системы АТФ-фосфокреатин (хранящийся в мышцах) используется для максимально коротких всплесков мышечной силы.

Анаэробный гликолиз.

Глюкоза
Глюкоза

Накопленный в мышцах гликоген можно разделить на глюкозу, а затем использовать глюкозу для получения энергии. Гликолиз является первой частью этого процесса, который происходит без использования кислорода и, следовательно, считается анаэробным. Во время гликолиза каждая молекула глюкозы расщепляется на две молекулы пировиноградной кислоты, и энергия высвобождается с образованием четырех молекул АТФ для каждой молекулы глюкозы.

Молекулы пировиноградной кислоты могут использоваться митохондриями в мышечных клетках, реагируя с кислородом, и обеспечивать молекулы АТФ, но если упражнение слишком интенсивное, то, вероятно, кислорода недостаточно, поэтому пировиноградная кислота превращается в молочную кислоту.

Другой характеристикой системы гликоген-молочная кислота является то, что она может образовывать молекулы АТФ примерно в 2,5 раза быстрее, чем окислительный механизм митохондрий. Поэтому, когда большое количество АТФ требуется для коротких или умеренных сокращений мышц, механизм анаэробного гликолиза может быть использован в качестве быстрого источника энергии.

В оптимальных условиях система гликоген-молочная кислота может обеспечивать максимальную мышечную активность от 70 до 100 секунд в дополнение к 8-10 секундам, предоставляемым фосфагеновой системой, хотя и при несколько сниженной мышечной силе.

Окислительное фосфорилирование (аэробная система).

Аэробная система — это окисление глюкозы, жирных кислот и аминокислот. В сочетании с кислородом эти соединения способны выделять большое количество энергии, используемой для обеспечения АТФ. Существует два метаболических пути: цикл Кребса и цепь переноса электронов, которые работают вместе. Эти пути удаляют водород из углеводов, жиров и белков, так что потенциальная энергия в водороде может быть использована для производства АТФ.

Цикл Кребса
Цикл Кребса

Такая система обеспечивает меньше АТФ, чем фосфокреатин — креатиновая система, но она может продолжать работу до тех пор, пока существуют питательные вещества для обеспечения окисления.

Таким образом, аэробная система полезна для менее мощных, но более длительных аэробных упражнений.

Подписывайся на наши соц. сети и следи за новыми статьями.

Text.ru - 100.00%

Добавить комментарий

Advertisment ad adsense adlogger